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Abstract
Layered systems show anisotropic transport properties. The interlayer
conductivity shows a general temperature dependence for a wide class of
materials. This can be understood if conduction occurs in two different
channels activated at different temperatures. We show that the characteristic
temperature dependence can be explained using a polaron model for the
transport. The results show an intuitive interpretation in terms of coherent
and incoherent quasi-particles within the layers. Further, we extract results for
the magnetoresistance, thermopower, spectral function and optical conductivity
for the model and discuss application to experiments.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Layered materials show a range of interesting behaviour, ranging from high temperature
superconductivity to giant and colossal magnetoresistance. A common feature of some of
these materials (see for example [1–3]) is that they show a peak in the interlayer resistivity
as a function of temperature. In some cases there is also a peak in the intralayer resistivity.
We can identify different temperature scales, from experiment. T max

⊥ determines the maxima
in the interlayer resistivity. T max

‖ determines the maxima in the intralayer resistivity. Besides
this, recent angle resolved photoemission (ARPES) experiments [4] concluded that the peak in
the interlayer resistivity is closely related to intralayer coherence, and that there is a crossover
for the spectral function from being coherent to being incoherent at a temperature T coh. This
idea that the scattering within the layers affects the transport between the layers has recently
been investigated by Vozmediano et al [5]. All of this can be explained if there are two
mechanisms of transport [6, 9]. One, a coherent mechanism, dominates at low temperatures,
while at elevated temperatures an incoherent contribution starts to dominate. In this paper we
will demonstrate that polaronic transport can be the mechanism providing this physics. This
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Table 1. Temperature scales in experiment for different materials. n.s. means that the peak is not
seen in the experiment, indicating that, if it is there, it is higher than the temperature range scanned
in the experiment, n.a. means that the result is not available to our knowledge.

Material T max⊥ (K) T max‖ (K) T coh (K)

(Bi0.5Pb0.5)2Ba3Cu2Oy [4] 200 n.s. ∼180
NaCo2O4 [4] 180 n.s. ∼150
La1.4Sr1.6Mn2O7 [1] 100 270 n.a.
Sr2RuO4 [2] 130 n.s. n.a.
TmBa2Cu3O6.41 [6] 127 n.s. n.a.
(TMTSF)2PF6 [7] 90 n.s. n.a.
κ-(BEDT-TTF)2Cu(SCN)2 [8] 95 100 n.a.

gives an intuitive explanation for the different temperature scales associated with transport
and coherence. We extend the idea presented by Alexandrov and Bratkovsky [10], and
apply it to layered transport. In that paper they discussed (bi)polaron formation within giant
magnetoresistance materials.

Another powerful tool when studying polaronic transport is the thermopower. At high
temperatures the conductivity is activated and the resistivity shows an exponential temperature
dependence with a gap Eσ ; the thermopower usually shows a 1/T behaviour where the
barrier is Es. One signature of polaronic transport is that Es � Eσ , whereas for normal
semiconductors (where the transport is activated) we have Es = Eσ [11]. From comparing
the high temperature electrical resistivity and thermopower, a number of experimentalists have
argued for the existence of small polarons in LaMnO3 compounds [12–14]. Further evidence
for small polarons can be found in neutron scattering data, where the polaron induces a local
deformation of the lattice [15–17]. Measurements of thermopower in different directions in an
organic quasi-two-dimensional crystal found differences in behaviour between the interlayer
thermopower and the interlayer one [18]. Further, the presence of polarons was confirmed by
photoemission experiments [19].

The approach that we present is based on known approximations for the polarons [20, 21].
Recent dynamical mean field (DMFT) calculations made on the transport of small polarons [22]
indicate that the approximations that we are going to use overestimate the resistivity, and the
exact functional behaviour of the resistivity. The results of Fratini et al [22] show that there are
two temperature regions. One is a semiconducting region where transport is heavily influenced
by phonon fluctuations. Then there is a non-adiabatic regime, which compares mostly to the
small polaron regime in the Holstein model. Here, however, we are more concerned with
transitions between different regions of small polaron transport, not so much with the exact
details, and it seems that the approximations that we use do capture the essential physics. We
do not claim that polarons are responsible for all the observed effects, simply that they can
provide some insight into the physics of layered systems. For instance, for the manganites it
seems that the double-exchange model is the preferred one (see [23] and references therein),
although another explanation, in terms of a carrier density collapse due to bipolarons and their
magnetic features [24], is gaining interest. Even the thermopower seems to be consistent with
this model [25]. There are also theories using a combination of double-exchange models and
polarons for the localized structure [26]. A shorter presentation of some of the results from this
paper has been previously published [27]. We have also investigated the problem of angular
magnetoresistance oscillations in layered metals arising from incoherence [28].

The layout of the paper is as follows. In section 2 we present the model, and the small
polarons are introduced in section 3 with the decay and Green function. In section 4 we turn
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to the transport properties for the intralayer and interlayer currents and thermopower. We
conclude with a calculation of the optical properties, section 4.4, and a special case of the
magnetoresistance, section 4.5.

2. Model Hamiltonian

We start with a Holstein model [29] for an infinite system where the electrons interact with
bosons. The Hamiltonian is

H =
∑

i

ε0c†
i ci +

∑
q

h̄ωqa†
qaq +

∑
〈iη〉

tiηc†
ηci +

∑
i,q

Mqc†
i ci eiq·Ri (aq + a†

−q), (1)

where ε0 is the on-site energy, ωq is the dispersion of the bosons, tiη is the integral of hopping
between neighbouring sites i and η, Mq is the coupling between the bosons and the electrons.
We want to emphasize that we will talk about bosons, since the theory will look the same for all
types of boson with a coupling given in the Hamiltonian above. The bosons can be phonons,
spin waves, plasmons or any other type fulfilling bosonic commutation rules. Since we want
to study layered systems we split the hopping into that parallel and perpendicular to the layers,
t‖ and t⊥ respectively, where t‖ � t⊥. We only include hopping between nearest neighbours,
both for the intralayer and the interlayer hopping. This enables us to write the Hamiltonian in a
way more adapted to the layered case, shown in figure 1. The nature of the transport depends on
how t‖ and t⊥ compare with �, the scattering rate due to the bosons. We assume that � > t⊥, so
that the interlayer transport can be described by considering two decoupled layers—meaning
that the electrons scatters many times within the layers before jumping to the next [5, 2, 27, 28].
We assume that we can decouple the bosons within each layer separately, i.e., the bosons are
localized in each layer; the only interaction between bosons in different layers comes from
the electron tunnelling, but this occurs more seldom than the electron scattering of bosons in
each layer. The Hamiltonian can be specified for this system. Two layers are coupled with
a hopping Hamiltonian. Within each layer the electrons can hop but there is a coupling to a
bosonic degree of freedom in each layer. We then use the Hamiltonian

H = H1 + H2 + Ht (2)

where

H1 =
∑

i

ε0c†
i ci +

∑
q

h̄ωqa†
qaq + t‖

∑
〈iη〉

c†
ηci +

∑
i,q

Mqc†
i ci e

iq·Ri (aq + a†
−q),

H2 =
∑

j

ε0d†
j d j +

∑
p

h̄ωpa†
pap + t‖

∑
〈 jδ〉

d†
δ d j +

∑
j,p

Mpd†
j d j eiq·R j (bp + b†

−p),

Ht = t⊥
∑

i

(c†
i di + h.c.).

Here, and below, q, c, i, a, 1 refers to one layer and p, d, j, b, 2 to the other one.

3. Small polarons

First we focus on the properties of the two layers separately, i.e., we ignore the term,Ht , for the
hopping between the layers. We perform a Lang–Firsov transformation [30] to diagonalize the
Hamiltonian, excluding the hopping term, defined above, in each layer. Then ci → c̃i = ci Xi
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Figure 1. We model the two coupled layers as an anisotropic 3D system. Within each layer the
electrons couple to bosons to potentially form small polarons. This is described by the Hamiltonians
H1 and H2. The two layers are then coupled by a direct hopping term, Ht .

and d j → d̃ j = d j Y j where

Xi = exp

[∑
q

eiq·Ri
Mq

h̄ωq
(aq − a†

−q)

]
,

Y j = exp

[∑
p

eip·R j
Mp

h̄ωp
(bp − b†

−p)

] (3)

are the polaron operators [20] for the first and second layer respectively. Further, ai →
ai − M

ω0
c†

i ci . The Hamiltonian is transformed to H̄ = eSHe−S where S = M
h̄ω0

∑
i c†

i ci(a
†
i −ai).

The Hamiltonian becomes

H̄ =
∑

q

h̄ωqa†
qaq +

∑
p

h̄ωpb†
pbp −

∑
j

�d†
j d j −

∑
i

�c†
i ci

+ t‖
∑
i,η

(c†
i+ηci X†

i+η Xi + h.c.) + t‖
∑

j,δ

(d†
j+δd j Y

†
j+δY j + h.c.)

+ t⊥
∑
i, j

(c†
i d j X†

i Y j + h.c.), (4)

where

� =
∑

q

M2
q

h̄ωq
− ε0, (5)

is the polaron binding energy. The intralayer hopping terms can be treated by adding to and
subtracting from the Hamiltonian a term [31]

Hsp ≡ t‖
∑
〈i j〉

〈Xi X†
j 〉c†

i c j ≡
∑

k

εkc†
kck (6)

where 〈· · ·〉 denotes a thermal average over boson states and this term describes a tight binding
band of small polarons for a square lattice within each layer [30, 31]:

εk = ε0 − e−N−1 ∑
q

(
Mq
h̄ωq

)2
(1+2nB)t‖[cos(kxa) + cos(kya)], (7)

where a is the lattice constant within the layers, N is the number of sites in one layer
and nB(T ) = (exp(h̄ωq/kBT ) − 1)−1 is the Bose function. We see that the quasi-
particles are described by a tight binding energy, where the bandwidth is reduced due to
the polaron formation. Polaron transport narrowing has been seen experimentally in muon
experiments [32].
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There is then a residual interaction [31] between the polarons and the bosons which is
described by

H̄p−b = t‖
∑
〈i j〉

[Xi X†
j − 〈Xi X†

j 〉]c†
i c j , (8)

and leads to scattering of the small polarons.

3.1. Decay of the quasi-particles

Later we will need the decay, �, so we start by calculating it. We will calculate the first
contribution to the self-energy in one layer by a method similar to the one used by Alexandrov
and Mott [31]. The first non-zero contribution to the imaginary part of the self-energy, 	,
comes when the polaron emits one boson and absorbs one boson. This process is shown in
figure 2, and is induced by the polaron–boson scattering from equation (8). By using Fermi’s
golden rule we get an expression for the decay:

� = 2π
∑
q,q′

|〈nq − 1, nq′+1; k + q − q′|Hp−b|nq, nq′ ; k〉|2δ(εk − εk+q−q′). (9)

Here, H̄p−b is the polaron–boson interaction in equation (8). Using this Hamiltonian we get
that

〈nq − 1, nq′+1; k + q − q′|H̄p−ph|nq, nq′ ; k〉
= 4t‖

N
√

nq
√

nq′ + 1

(
Mq

h̄ωq

)(
Mq′

h̄ωq′

)
〈k + q − q′|c†

k+q−q′ck|k〉δq−q′ . (10)

To simplify this to get an energy independent expression we use an energy independent density
of states and assume a k independent coupling between the electrons and the bosons. We only
consider a single frequency ω0 for reasons of simplicity; this allows us to express some of our
results in an analytical form. Then we can define the dimensionless coupling

g ≡
(

M

h̄ω0

)2

(11)

that will enter our equations later. We require that g is greater than or equal to 1 in order for
small polaronic effects to be important2. Using this, we get that

τ−1 = Wg2nB(1 + nB), (12)

where W = 4t̃‖ is the polaron bandwidth, which is subject to narrowing due to the
renormalization of the hopping t → t̃‖ ≡ t‖e−g(1+2nB).

3.2. The Green function in the layer

Let us start by calculating the retarded electron Green function (GF) within one layer, ignoring
the coupling between the layers (t⊥ = 0). This gives us valuable information on the coherence
of the quasi-particles, and can be compared to angle resolved photoemission spectra (ARPES).
After performing the Lang–Firsov transformation the small polaron GF is

G0(k, τ ) = −i�(τ)
1

N

∑
i,i ′

eik·(Ri −Ri′ )〈Tτ ci(τ )c†
i ′(0)〉 = −i�(τ)e(εk−i�)iτ/h . (13)

2 Strictly speaking there are three conditions for small polaron transport [29], t < gh̄ω0,
√

2t < M and
t <

√
M(

2kB T h̄ω0
π3 )1/4.
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k k+q-q’

Figure 2. The diagram describing the first contribution to the polaron decay, �. The polaron emits
and absorbs one boson, changing its momenta.

� is the imaginary part of the polaron self-energy. In this equation we have ignored the real part
of the self-energy since we will use a model dispersion anyway. To get the electron GF we have
to convolute this GF with the average over two polaron operators 〈T X†

i (t)Xi ′ (0)〉 ≡ ii ′(t).
This average can be decoupled and written as an exponential [30, 20]:

i i ′(t) = e−g(1/2+nB) exp

{
g

∑
q

cos[q · (Ri − Ri ′)][(1 + nB)e−iωt + nBeiωt ]

}
. (14)

After Fourier transforming the average of the polaron operators,giving a sum of delta functions,
we will have a convolution

G(k, iωn) = 1

N

∑
ωn′ ,Rm ,k′

(Rm, ωn′ − ωn)G0(k′, ωn′)ei(k−k′)·Rm . (15)

After some algebra we come to the following expression:

G(k, iωn) = e−g(1+2nB) 1

N

∑
Rm ,k′

ei(k−k′)·Rm

∞∑
l=−∞

Il [2g
∑

q cos(q · Rm)
√

nB(1 + nB)]e−lh̄ω0β/2

iωn − εk′ + lh̄ω0 + i�
.

(16)

Here Il indicates a modified Bessel function of order l. Performing the summation over Rm ,
care has to be taken when considering the l = 0 term; we get the final result for the GF:

G(k, ω) = e−g(1+2nB)

{
1

ω − εk + i�
+

∑
k′

I0[2g
√

nB(1 + nB)] − 1

ω − εk′ + i�

+
∑

k′,l =0

Il [2g
√

nB(1 + nB)]e−lh̄ω0β/2

ω − εk′ + lh̄ω0 + i�

}
. (17)

Note that we have written the GF as a sum of a coherent and an incoherent part. This can
be compared to the zero-temperature result given by Alexandrov and Mott [31]. At T = 0
there are no bosons to absorb and only l � 0 contributes to the GF. Also, we can compare
this to the non-zero temperature GF given by Ciuchi et al [33]. The first line is dependent
on k, thereby describing a coherent part. There will be a well-defined quasiparticle peak
at ω = εk, with a spectral weight of e−g(1+2nB). The second and third lines contain a sum
over the intralayer momentum and are therefore independent of k; they are incoherent. The
two contributions have different temperature dependences: the coherent one dominates at low
temperature and the incoherent one at high temperature. This means that there is a crossover
from coherent intralayer motion at low temperature to incoherent intralayer motion at high
temperatures. In figure 3 we show the spectral function resulting from this GF at the Fermi
wavevector as a function of the energy. The summation over k is done by integrating over
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Figure 3. The quasi-particle spectral function, n f (ε) Im[G(kF, ε)], for an electron–phonon
coupling, g = 1, for different temperatures. The sum over k is done by integrating over the density
of states, which we assume is flat with a bandwidth W = 77h̄ω0. There are two contributions to the
spectral function, one coherent, dominating at low temperatures, and one incoherent, dominating
at high temperatures. Similar behaviour has been seen experimentally [4].

a flat density of states. This is what is measured in ARPES experiments such as the one
in [4] for (Bi0.5Pb0.5)2Ba3Co2Oy and NaCo2O4. Recently, similar features were seen for
Sr2RuO4 [34]. The coherent contribution displays a peak at the Fermi energy and the k vector
at low temperature, indicating a coherent quasi-particle. The peak disappears as the temperature
is increased. From plots of the spectral function one can estimate a crossover temperature when
the contribution from the incoherent part starts to dominate over the incoherent one. This will
take place when

kBT coh ∼ h̄ω0

2g
. (18)

Note that coherent quasiparticles are still present in the spectral function; it is just that at
the Fermi level there are more incoherent ones. It is hard to find a precise measure of the
crossover, since it depends on what measurements are made and how they relate to the spectral
function; e.g., for the conductivity it is an integrated quantity with a spread around the Fermi
level depending on the temperature. Later we will see that the drop in coherent quasiparticles
is related to the interlayer conductivity.

4. Transport properties

Let us now turn to the transport properties of the layered material which is described by the
layered Hamiltonian defined above. At an applied voltage V , the current is given by the
current–current correlation function derived from the Kubo formula [20]

Iµν(eV ) = 2e

h
Im

{∫ β

0
dt eieV t 〈T ĵµ(t) ĵ †

ν (0)〉
}
, (19)
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where ĵ is the current operator. µ and ν are directions in the crystal. For our system, including
polarons, the current operator for nearest neighbour hopping is

( ja, jb, jc) = − ie

h̄

[
t‖

∑
i,η

( �R‖
i+η − �R‖

i )c
†
i+ηci X†

i+η Xi + t‖
∑
j,η

( �R‖
j+η − �R‖

j )d
†
j+ηd j Y

†
j+ηY j

+ t⊥
∑

j,δ

( �R⊥
j+δ − �R⊥

j )d†
j+δc j Y

†
j+δ X j

]
. (20)

The first term corresponds to hopping in layer 1, the second term to hopping in layer 2 and
the third to hopping between adjacent positions in the two layers. Since we also are going to
study thermopower, we give the expression for the energy current in the same model:

( j e
a , j e

b , j e
c ) = − ie

h̄

[
t‖ε
2

∑
i,η

( �R‖
i+η − �R‖

i )c
†
i+ηci X†

i+η Xi +
t‖ε
2

∑
j,η

( �R‖
j+η − �R‖

j )d
†
j+ηd j Y

†
j+ηY j

+
t⊥ε

2

∑
j,δ

( �R⊥
j+δ − �R⊥

j )d†
j+δc j Y

†
j+δ X j

]
, (21)

and ε is the energy of the quasi-particle. Let us separate the current within the layers and
perpendicular to the layers, since they usually show different behaviours in experiment.

4.1. Current within the layers

In this section we will calculate the current within the layers. We split the calculation into two
regimes because if we use equation (20) directly in equation (19), the result is too complicated
to decouple, so we split the calculation into low and high temperature parts, where different
parts of the Hamiltonian dominate, and we can use perturbation theory.

4.1.1. Low temperatures. At low temperatures the transport within the layers is coherent. If
the layers are metallic we can treat them in a Fermi liquid manner and use that the conductivity
depends on the scattering rate via the scattering time, τ = h/�:

σ‖ = e2

2π2

∫
v(k)v̄(k)

(
−∂ f

∂ε

)
τ (k) d2k. (22)

The decay is calculated as usual from the imaginary part of the self-energy, and is given in
equation (12). We use the tight binding approximation, equation (7), to get the quasiparticle
velocity, v(k) = ∇kεk

h̄ , in one direction and get the conductivity,

σ xx
‖ = e2

πh

β t̃‖a2

g2nB(1 + nB)

∫ 2π

−2π

dx dy
sin2(x)

1 + cosh[β(ε0 + t̃‖ cos(x) + t̃‖ cos(y) − µ)]
. (23)

4.1.2. High temperatures. At high temperatures the polarons are localized, the bandwidth
disappears and the hopping, t‖, is the perturbation. Utilizing equation (19) for the current,
we decouple the electron operators to polaron GFs in each layer, G = (ω − � + 	 + i�)−1.
Note that there is no k dependence for the polaron GFs since they are localized at an energy
� = ε0 − gh̄ω0 < 0. The calculation of the GF in perturbation theory is described in the
appendix. The four X operators are decoupled as in [20] into diagonal (no change of boson
state) and non-diagonal transitions (when the boson state changes in the hop). The result for
the non-diagonal transitions is

〈Tτ X†(τ )X (τ )X†(0)X (0)〉ω
= e−2g(1+2nB)

∞∑
l=−∞

{∫ ∞

−∞
Il
[
4g

√
nB(1 + nB)

]
e−lh̄ω0β/2eilω0 t − 1

}
. (24)



Coherence and layered transport 6703

For the diagonal part, the four X operators decouple and cancel the −1 term above when added
together. Combining the two correlators and taking the imaginary part we convolute the two
Fourier transforms similarly to what was done for the GF above, so we get for the current

I‖(ω) = 2e

h
t2
‖ d2e−2g(1+2nB)

∫ ∞

−∞
dε

2π
A(ε)

×
∞∑

l=−∞
Il
[
4g

√
nB(1 + nB)

]
e−lh̄ω0β/2 A(ε + ω + lh̄ω0)

× [nF(ε) − nF(ε + ω + lh̄ω0)]. (25)

The conductance is obtained as usual as σ‖ = e dI‖
d(ω)

|ω=0.
The conductivity can now be plotted. The metallic, low temperature, part decreases with

increasing temperature and the insulating, high temperature, phase takes over as temperature
is increased. There is a peak in the resistivity and a crossover from coherent to incoherent
transport, described by equations (23) and (25) respectively. We constructed similar plots for
a range of coupling constants, g, and saw that the intralayer crossover occurs at a temperature
given by

kBT max
‖ ∼ 2

h̄ω0

g
. (26)

We have used the same decay, �, for both the low and high temperature limits. This
approximation assumes that the dominant part of the scattering of the carriers in both limits is
the electron–boson coupling. The results are shown in the figures below.

4.2. Current perpendicular to the layers

Let us now turn to the current perpendicular to the layers. The current operator for an applied
field in the perpendicular direction in a nearest neighbour hopping model (from layer 1 to 2)
is given in equation (20). We assume that the hopping between the layers only take place
between nearest neighbours; see figure 1. Then, (R j+δ − R j) is the distance between the two
layers, d , since δ = 1 for nearest neighbour hopping. The Kubo formula, equation (19), gives,
to second order in t⊥,

I⊥(eV ) = 2e

h
t2
⊥d2

∑
j, j1

∫ β

0
dτ eieV τ 〈Tτ c†

j (τ )d j1(τ )d†
j (0)c j1(0)〉〈Tτ Y †

j1
(τ )Y j (τ )X†

j(0)X j1(0)〉.

(27)

We decouple the operators in the first and second layer. This means that the Fourier transformed
averages of the electron operators give rise to polaron Green functions:

〈T c†
j (t)c j1(0)〉 → G0

1(k, ipn),

〈T d j1(t)d
†
j (0)〉 → G0

2(p, ipn − iω).

The average of the polaron operators (X, Y ) can be decoupled for the two layers separately,
and written as an exponential (t) [30, 20], as was done for the GF above. Since the couplings
in all layers are the same, M1 = M2, we can either combine the two averages of the polaron
operators into one exponential ((t) ∗ (t) = ((t))2) or keep them as two separate ones.
Then we can perform the Fourier transform τ → ω, and if we assume that the GF has an
imaginary part, as above, we get the following for the interlayer tunnelling current:

I⊥(eV ) = 2e

h
t2
⊥d2e−2g(1+2nB)

{∫ ∞

−∞
dε

2π

∑
k

A0
1(k, ε)A0

2(k, ε + eV )[ f (ε) − f (ε + eV )]
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+
(
I0

[
4g

√
nB(1 + nB)

] − 1
) ∫ ∞

−∞
dε

2π

∑
k

A0
1(k, ε)

∑
p

A0
2(p, ε + eV )

× [ f (ε) − f (ε + eV )] +
∞∑
l =0

l=−∞

Il
[
4g

√
nB(1 + nB)

]
e−lh̄ω0β/2

×
∫ ∞

−∞
dε

2π

∑
k

A0
1(k, ε)

∑
p

A0
2(p, ε + eV + lh̄ω0)

× [ f (ε) − f (ε + eV + lh̄ω0)]

}
(28)

k belongs to the first layer and p to the second. A0
1 and A0

2 are the spectral functions for the
electron GFs in each layer:

A0
1(k, ε) = �

(ε − εk)2 + �2
, (29)

A0
2(p, ε) = �

(ε − εp)2 + �2
. (30)

The index l is a combined index—for the number of bosons emitted or absorbed in layers 1
and 2 combined.

To illustrate this, consider what would be obtained if we had not combined the two
exponentials; the result would be

I⊥(eV ) ∝ 2t2
⊥e−∑

q(
Mq
h̄ωq

)2(1+2nB)−∑
p(

Mp
h̄ωp

)2(1+2nB)

×
∏
q,p

∞∑
l,l′=−∞

∫ ∞

−∞
dε

2π
A2(ε − l ′h̄ωq)A1(ε + eV + lh̄ωp)

× [nF(ε − l ′h̄ωq) − nF(ε + eV + lh̄ωp)]

× Il

(
2

(
Mp

h̄ωp

)2√
nB(1 + nB)

)
Il′

(
2

(
Mq

h̄ωq

)2√
nB(1 + nB)

)
e−β/2(lh̄ωp+l′h̄ωq).

(31)

l belongs to the first layer and counts the number of bosons attached to the electron; l ′ refers
in a similar fashion to the second layer. The connection between equations (28) and (31) can
be found from the identity for the Bessel functions

∞∑
l,l′=−∞

Il−l′ (x1)Il′ (x2) =
∞∑

l=−∞
Il(x1 + x2). (32)

Equation (28) describes the polaron jumping and the shift in phonons attached to the polaron
in the jump, whereas equation (31) describes the electron and its attached phonon cloud in
each layer, l and l ′ respectively.

The expression for the current, equation (28), has one contribution from coherent and
two from incoherent transport. Note the similarity of the structure of equation (28) to that
of the expression for the GF, equation (17). The first term corresponds to transport which
conserves the intralayer momentum in the tunnelling process. This is seen since the crystal
momentum k is the same for the spectral function for the two different layers. For the other
terms, the intralayer momentum is not conserved (in each layer the sums over the momentum
are separate). The second row corresponds to transport when the net number of bosons in the
system is unchanged. When the quasi-particle tunnels it leaves behind the cloud of bosons
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Figure 4. Interlayer resistivity as a function of temperature for different values of the coupling
g. At low temperatures, the transport is predominantly coherent, as seen from equation (28).
Then, as the temperature is increased, the incoherent mechanism of transport takes over. We have
σ⊥ = σ coh.⊥ + σ inc.⊥ ; the two contributions are shown separately and together in the plot. The

crossover from coherent to incoherent transport is clearly seen. ρ−1
0 = 2e2

h t2⊥d2, W = 77h̄ω0.

in one layer and attaches to a replica of bosons in the second layer. The third row describes
transport when a net number of bosons is absorbed (l > 0) or emitted (l < 0), thus changing
the energy of the polaron in the hop between the two layers. In a recent paper [28] we
established a connection between the intralayer coherence and the appearance of dips in the
angular magnetoresistance, the so-called ‘magic angles’. We showed that a contribution from
incoherent jumps between highly conducting one-dimensional strands of molecules gives a
natural explanation of the phenomena observed in the magnetoresistance. At low temperature
the coherent part dominates but at high temperature (high compared to the boson energy,
h̄ω0, kBT > h̄ω0) the incoherent mechanism of transport will dominate. Thus, there is a
crossover from coherent to incoherent transport. The crossover temperature is fixed by having
equal contributions from the coherent and the incoherent parts. Ignoring the contribution from
the l = 0 terms in equation (28) we can get an approximate expression for the crossover
temperature:

kBT max
⊥ ∼ h̄ω0

4
√

23g
∼ 1.68

h̄ω0

g
. (33)

From equation (28) we can extract the conductivity via a simple derivative: σ‖ =
e dI‖

d(eV )
|eV =0. In figure 4 we plot the conductivity as a function of temperature for one value of

g. The crossover is clearly seen.
In general, the interlayer conductivity for identical decoupled layers is [35]

σ⊥ = 2e2

h
t2
⊥

∫
dε

∑
k

|A(k, ε)|2
[
−d f

dε

]
, (34)

where A(k, ε) is the electron spectral function for a single layer. Directly substituting
equation (17) in (34) we obtain the same result as was found from equation (28).
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We can check the result by taking some limits in equation (28). When the temperature is
zero, we get

σ⊥(T = 0) = 2e2

h
t2
⊥d2e−2g

∑
k

A1(k, 0)A2(k, 0)

2π
= 2e2

2πh
t2
⊥e−2g D(ε = 0)

2�
. (35)

Here, D(ε = 0) is the density of states at the Fermi level. Thus, at low temperature when
only the first (coherent) term contributes to the conductivity, the temperature dependence of
σ⊥ is governed by the temperature dependence of the decay, �, given by equation (12), for
the polaron case. If we expand equation (28) for high temperatures the conductivity behaves
approximately as

σ⊥ ∝ T −3/2, (36)

which is consistent with the equipartition theorem [36]. In figure (4) this should be an upturn
in the resistivity; it is not seen for g > 0.1, since it happens first when kBT/h̄ω0 � 2, i.e.,
after we cut the plot.

If we take the limit g = 0 we get

σ⊥(g = 0) = 2e2

h
t2
⊥d2

∑
k

∫ ∞

−∞
dε

2π
A1(k, ε)A2(k, ε)βnF(ε)[1 − nF(ε)], (37)

as expected from transport theory [20].

4.3. Thermopower

Let us now turn to calculating the thermopower for intralayer and interlayer transport. The
thermopower is defined as a correlator, using the heat current instead of the electrical current
in equation (19) (see [20]):

L12 = 2e

h
Im

{∫ β

0
dt eiωt 〈T ĵ e

µ(t) ĵ †
ν (0)〉

}
, (38)

and, using that the current–current correlator gives us L11, and σ = L11/T , we get

S = 1

T

L12

L11
= 1

T 2

L12

σ
. (39)

For the intralayer thermopower we consider the low and high temperature limits separately.

4.3.1. Low temperature intralayer thermopower. At low temperatures the correlator is similar
to the one calculated for the intralayer low temperature conductivity, except for an additional
εk/2 in the (energy) current operator. This factor only contributes an additional t̃‖ cos(kx a)/2
if we assume that we do the measurement along x . The result is that, for low temperatures,
the thermopower is

Slow
‖ = 1

T

t̃‖
2e

∫
d2k f (εk)[1 − f (εk)] sin2(kx a) cos(kx a)∫

d2k f (εk)[1 − f (εk)] sin2(kxa)
. (40)

4.3.2. High temperature intralayer thermopower. At high temperatures, we can follow the
same steps as for the intralayer current, with the only difference that the energy operator is the
current operator multiplied by t‖

2 . Then, in equation (39) the correlators cancel, and we simply
end up with [37]

Shigh
‖ = t‖

2eT
. (41)
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The thermopower in the high temperature limit falls off as 1
T . In the low temperature limit,

there is a prefactor of 1
T in equation (40), but the magnitude depends heavily on the filling of the

polaron band. The two results in the low and high temperature regions, equations (40) and (41)
respectively, have a strong 1

T dependence. This means that there does not necessarily have to
be a peak in the intralayer thermopower corresponding to any transition between coherent and
incoherent transport. Therefore, the transition in the intralayer transport is more clearly seen
in the electrical transport, not the thermopower. The 1/T dependence is typical for polarons
at high temperatures as seen, e.g., in La2/3Ca1/3MnO3 films [38] and (La, Ca)MnO3 [12].

4.3.3. Interlayer thermopower. We follow the same steps as for the interlayer conductivity
with the replacement of one current operator by one energy–current operator as in equation (38).
The result for L12 is

L12
⊥ = 2e

h
t2
⊥e−2g(1+2nB)d2

{∫ ∞

−∞
dε

2π

∑
k

ξk A0
1(k, ε)A0

2(k, ε + eV )[ f (ε) − f (ε + eV )]

+
(
I0

[
4g

√
nB(1 + nB)

] − 1
)

×
∫ ∞

−∞
dε

2π

∑
k

ξk A0
1(k, ε)

∑
p

A0
2(p, ε + eV )[ f (ε) − f (ε + eV )]

+
∞∑
l =0

l=−∞

Il
[
4g

√
nB(1 + nB)

]
e−lh̄ω0β/2

∫ ∞

−∞
dε

2π

∑
k

ξk A0
1(k, ε)

×
∑

p

A0
2(p, ε + eV + lh̄ω0)[ f (ε) − f (ε + eV + lh̄ω0)]

}
. (42)

Here ξk = εk − µ. The thermopower is then given by equation (39). In figure 5 we make a
comparative plot of the resistivity and the thermopower between the layers. For a Fermi liquid
the thermopower would fall off as 1

T at high temperatures (see, e.g., Salamon et al [11]); fitting
a curve to our numerical results shows that our expression for the interlayer thermopower falls
off exponentially instead.

4.4. Optical conductivity

The optical conductivity is given by calculating the derivative of the frequency dependent
current I⊥(ω) in equation (28) with respect to ω = eV . We assume that the following relations
hold (when � � W ):∫

dx D(x)A(x, ε) =
∫

dx D(x)
�

(ε − x)2 + �2
= D(ε),∫

dx D(x)A(x, ε)A(x, ε + ω)

=
∫

dx D(x)
�

(ε − x)2 + �2

�

(ε + ω − x)2 + �2
= D(ε)

�

ω2 + �2
.

We get that the full expression for the optical conductivity is

σ(ω) = 2e2

h
t2
⊥d2e−2g(1+2nB)

{∫ ∞

−∞
dε

2π
D(ε)

�

ω2 + �2
βnF(ε + ω)[1 − nF(ε + ω)]

+
(
I0

[
4g

√
nB(1 + nB)

] − 1
) ∫ ∞

−∞
dε

2π
D(ε)D(ε + ω)βnF(ε + ω)
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Figure 5. The top panel shows the interlayer resistivity as a function of temperature for different

electron–phonon coupling strengths, ρ−1
0 = 2e2

h t2⊥d2, W = 160h̄ω0. The peak corresponds to
the transition between coherent and incoherent transport. The lower panel shows the interlayer
thermopower, S0 = t⊥

2e . The peak in the thermopower occurs at a lower temperature than for the
resistivity. The inset shows the thermopower for small electron–phonon coupling; note that it can
change sign although we do not consider carriers of hole type here. At high temperatures, and
strong electron–phonon coupling, the thermopower decays exponentially.

× [1 − nF(ε + ω)] +
∞∑

l=−∞
Il
[
4g

√
nB(1 + nB)

]
e−lh̄ω0β/2

×
∫ ∞

−∞
dε

2π
D(ε)D(ε + ω + lh̄ω0)

× βnF(ε + ω + lh̄ω0)[1 − nF(ε + ω + lh̄ω0)]

+
∫ ∞

−∞
dε

2π
D(ε)

2�ω

(ω2 + �2)2
[nF(ε) − nF(ε + ω)]

+
(
I0

[
4g

√
nB(1 + nB)

] − 1
) ∫ ∞

−∞
dε

2π
D(ε)D′(ε + ω)[nF(ε) − nF(ε + ω)]

+
∞∑

l=−∞
Il
[
4g

√
nB(1 + nB)

]
e−lh̄ω0β/2

∫ ∞

−∞
dε

2π
D(ε)D′(ε + ω + lh̄ω0)

× [nF(ε) − nF(ε + ω + lh̄ω0)]

}
.

Here D′ is the derivative of the density of states (which is zero for a constant DOS).
In the figure for the optical conductivity, figure 6, we see that there is a large coherent
Drude peak at low frequency, which disappears as the temperature increases, consistent with
experiments done on the manganites [3]. The disappearance of the Drude peak is consistent
with the peak in the spectral function disappearing; see figure 3. Such a behaviour has been
observed [39] for Sr2RuO4, where the Drude peak disappeared above 100 K. Another system
is La0.825Sr0.175MnO4, where the Drude peak disappears above 200 K [40].
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Figure 6. The top panel shows the frequency dependence of the interlayer optical conductivity for
two different temperatures. The Drude peak (at ω = 0) disappears when coherence is lost, due
to the destruction of coherent quasi-particles with increasing temperature. The two lower panels
show the optical conductivity divided into the two contributions, coherent and incoherent, plotted
for two different temperatures. The input density of states is flat with a bandwidth of W = 77h̄ω0.

4.5. Interlayer magnetoresistance for a field parallel to the layers

We can also make a statement about the magnetoresistance in a certain limit. If we apply a
magnetic field, B , parallel to the layers (the x–y plane) there is an orbital effect on the paths
of the electrons. This can be described as a shift in wavevector, k → k − e

h̄ A, where A is the
vector potential for the magnetic field. For a magnetic field in the x direction, when an electron
tunnels between adjacent layers it undergoes a shift in the y component of its wavevector by
−dB [35]. In the general expression, equation (34), |A(k, ε)|2 is replaced with an equation
containing A1(k, ε)A2(k + e

h̄ dB �y), since there will be a difference in vector potential between
the two layers.

However, since the incoherent part of the conductivity contains a summation over k space
and is independent of k, this will be unaffected by the magnetic field, i.e.

∑
p A0

2(p+ e
h̄ dB �y, ε+

eV ) = ∑
p A0

2(p, ε + eV ), since the sum spans over the first Brillouin zone.
Thus, we will have two contributions to the interlayer conductivity and one is B

independent:

σ⊥(B) = σ coh
⊥ (B) + σ incoh

⊥ (B = 0). (43)

σ coh(B) decreases with increasing magnetic field [41, 35]:

σ coh
⊥ (B) = σ coh

⊥ (B = 0)√
1 + (evF dB/�)2

(44)

where vF is the Fermi velocity. If we increase B , the coherent part decreases and, therefore,
T max

⊥ will shift to lower values. A separation of the conductivity into two parts, as in
equation (43), has been proposed previously [2] on a phenomenological basis, in order to
describe the magnetoresistance of Sr2RuO4 (except that there a weak field dependence is
associated with the incoherent contribution due to Zeeman splitting).
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Figure 7. Crossover temperatures as a function of electron–phonon coupling constant, for the
intralayer and interlayer resistivity, and the interlayer thermopower; for a fixed coupling and
increasing temperature, first the coherence between the layers is lost, then there is a crossover
peak in the interlayer thermopower and lastly the coherence within each layer is lost at elevated
temperatures. The sequence of crossovers does not change if t‖/W is changed.

5. Discussion

We have presented a layered polaron model for systems consisting of two-dimensional layers
coupled by tunnelling. We have found that when the temperature is lower than the characteristic
boson frequency the physics is dominated by coherent transport where the electrons scatters
off bosons in the layers. Upon increasing the temperature a transition is made into a region
where the physics is governed by incoherent small polarons. The small polarons are localized
at the lattice sites and hop to new sites. We have extracted results for intralayer and interlayer
transport, thermopower, ARPES, optical conductivity and magnetoresistance.

In figure 7 we plot the different crossover temperatures as a function of the dimensionless
electron–boson coupling.

The theory presented differs in the way polarons are formed from the theory by Ho and
Schofield [42]. In their model the polarons are formed by a distortion of the interlayer distance
to bind the polarons in a layer. We believe that this effect, although present, should be small
due to the huge deformation energy involved. Their model does show the crossover from
coherent to incoherent transport present in all polaron theories.
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Appendix. The Green function in the high temperature limit

In order to calculate the intralayer conductivity at high temperatures, when polarons are formed
and are localized, we need the GF. We perform perturbation theory in t and include the diagrams
shown in figure A.1. When summing the series shown in figure A.1, we have to consider the
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Figure A.1. The diagrams taken into account when calculating the self-energy for the trapped
polaron in the high temperature limit.
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Figure A.2. An example when the polaron can hop three steps away, from the solid circle to the
site marked with a box. From the sites marked with α there are three paths back (marked 1–3) and
there are three paths there; there are eight such equivalent α sites. The polaron can also take the
path to the site marked β; there are four equivalent sites of this type.

lattice that the electron moves in, i.e. the number of possible ways to return to the original site.
In figure A.2 we have shown the number of possible paths when the polaron hops three jumps
away from its original site. We have to find a general expression for the number of possible
jumps for the whole lattice, and take into account identical paths.

Generally if the electron hops 2n steps, the number of possible paths is 4 + 2 · 4n(n − 1).
Thus we get that the self-energy is

	(ω,�) = 4
∞∑

n=1

[1 + 2n(n − 1)]t2n G2n−1 = 4t2G
1 + t2G2 + t4G4

(1 − t2G2)3
, (A.1)

where G is the local polaron GF and t is the hopping integral within the layer.
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